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Abstract
For computer-aided diagnosis (CAD), detec-
tion, segmentation, and classification from
medical imagery are three key components
to efficiently assist physicians for accurate
diagnosis. In this chapter, a completely
integrated CAD system based on deep
learning is presented to diagnose breast
lesions from digital X-ray mammograms
involving detection, segmentation, and
classification. To automatically detect breast
lesions from mammograms, a regional deep
learning approach called You-Only-Look-
Once (YOLO) is used. To segment breast
lesions, full resolution convolutional network
(FrCN), a novel segmentation model of deep
network, is implemented and used. Finally,
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three conventional deep learning models
including regular feedforward CNN, ResNet-
50, and InceptionResNet-V2 are separately
adopted and used to classify or recognize
the detected and segmented breast lesion
as either benign or malignant. To evaluate
the integrated CAD system for detection,
segmentation, and classification, the publicly
available and annotated INbreast database
is used over fivefold cross-validation tests.
The evaluation results of the YOLO-based
detection achieved detection accuracy of
97.27%, Matthews’s correlation coefficient
(MCC) of 93.93%, and F1-score of 98.02%.
Moreover, the results of the breast lesion
segmentation via FrCN achieved an overall
accuracy of 92.97%, MCC of 85.93%, Dice
(F1-score) of 92.69%, and Jaccard similarity
coefficient of 86.37%. The detected and
segmented breast lesions are classified via
CNN, ResNet-50, and InceptionResNet-V2
achieving an average overall accuracies of
88.74%, 92.56%, and 95.32%, respectively.
The performance evaluation results through
all stages of detection, segmentation, and
classification show that the integrated CAD
system outperforms the latest conventional
deep learning methodologies. We conclude
that our CAD system could be used to assist

© Springer Nature Switzerland AG 2020
G. Lee, H. Fujita (eds.), Deep Learning in Medical Image Analysis,
Advances in Experimental Medicine and Biology 1213,
https://doi.org/10.1007/978-3-030-33128-3_4

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33128-3_4&domain=pdf
mailto:tskim@khu.ac.kr
https://doi.org/10.1007/978-3-030-33128-3_4


60 M. A. Al-antari et al.

radiologists over all stages of detection,
segmentation, and classification for diagnosis
of breast lesions.
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Introduction

Breast cancer is the second most common cancer
affecting the life of women worldwide [1]. In
2019, breast cancer is statistically categorized
among the highest causes of all other cancers, ac-
counting for 30%of estimated new cases and 15%
of death cases [1]. Early detection of breast cancer
is a crucial requirement to reduce the mortality
rate among women [1]. Up to date, digital X-ray
mammography is the standard and most reliable
tool to screen out the suspicious breast masses
and microcalcifications for patients [2]. In 2015,
the American Cancer Society (ACS) updated its
breast cancer screening roles. Currently, ACS rec-
ommends women over 45 years to undergo breast
screening one time per year using double views of
mammograms: Mediolateral Oblique (MLO) and
Cranio-Caudal (CC). Whereas, women with age
of 54 years or elder are encouraged to undergo
breast screening every 2 years [3]. In the diagno-
sis of breast abnormalities, clinical experts clas-
sify suspicious masses as benign or malignant.
This task presents a daily challenge for radiolo-
gists due to the huge number of mammograms
as well as the time and effort to examine each
view of a mammography [4]. Through the use of
second opinion or reading by a computer-aided
diagnosis (CAD) system, the overall accuracy
as well as the false positives and negatives of
mass detection, segmentation, and classification
could be improved [2]. In the literature, several
conventional CAD systems have been developed
separately for breast lesion detection, segmenta-
tion, or classification [5]. However, there are few
studies over a completely integrated CAD system

including detection, segmentation, and classifi-
cation all together. Firstly, detection of breast
lesion is an important initial stage to identify the
potential region of interest (ROI) of breast lesion
in any CAD system. In fact, detection task is
still challenging due to the variation of the breast
lesions within the surrounding tissues in terms of
shape, texture, size, and location in the mammo-
grams [6]. Recently, novel detection approaches
based on deep learning were introduced into a
CAD system to overcome the challenging tasks of
mass detection frommammograms [7]. Secondly,
segmentation of breast lesions plays a critical role
to accurately extract the specific shape of breast
lesions excluding other surrounding normal tis-
sues [8]. Many studies involving mass segmenta-
tion have utilized region growing, active contour,
and Chan-Vese methods [8]. Unfortunately, these
methods still lack performance in handling mass
segmentation automatically, because the simple
hand-crafted or semi-automatic features based on
prior knowledge cannot deal with complex shape
variations and different density distribution of
the breast lesions. Recently, a few deep learn-
ing studies have presented as alternative method-
ologies for breast lesions segmentations. Indeed,
deep learning models have capability to directly
extract deep high-level hierarchy feature maps
from the input image [8]. Lastly, the majority of
CAD systems have been developed to classify the
manual extracted breast lesions as either benign
ormalignant utilizing conventional classifiers [9].
To build such systems, a set of hand-crafted or
semi-automatic features describing the charac-
teristics of breast lesions are required. In fact,
these conventional CAD systems suffered due to
the high degree of similarity of different breast
tissues [10]. Alternatively, a few deep learning
CAD systems have recently been produced to
handle the breast lesion classification task [5].
These systems can learn and extract deep features
from input mammograms to achieve better classi-
fication performance.

A fully integrated CAD system based on
deep learning detection, segmentation, and
classification is presented in this chapter. The
rest of this chapter is organized as follows. First,
You-Only-Look-Once (YOLO) is adopted and
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used to detect the breast lesions [11]. Second,
a newly deep learning model of full resolution
convolutional network (FrCN) is produced for
breast lesion segmentation. One advantage of
FrCN is to preserve the high resolution of feature
maps especially at object edges. Finally, three
deep learningmodels includingCNN,ResNet-50,
and InceptionResNet-V2 are separately adopted
and used to distinguish benign and malignant
breast lesions. The presented fully integrated
CAD system is evaluated using a public INbreast
dataset [12] and its performance is compared
with the latest deep learning methodologies of
detection, segmentation, and classification.

RelatedWork

Diagnosis of breast cancer via a CAD system
could be improved using the capability of deep
learning to accurately represent the high-level
deep features of breast lesions in mammograms
[4]. Detection of breast lesions is an important
task to detect the potential abnormalities for any
CAD system [4]. Unfortunately, this task is still a
big challenging for researchers and has not been
fully resolved yet [8]. Previously, manual detec-
tion of breast lesions was widely used in building
CAD systems even for deep classification CNN
[13]. Most of these CAD systems achieved better
classification performance against the traditional
machine learning techniques [14]. However, the
need to automatically detect breast lesions was
recently addressed in the several studies [7, 8, 14].
Few studies based on deep learning present auto-
maticmethods to detect breast lesions from the in-
put mammograms [8, 14]. Our preliminary detec-
tion results of breast lesions via YOLO utilizing
the Digital Database for Screening Mammogra-
phy (DDSM) are presented in [15]. The detection
performance via YOLO was better in comparison
to the latest deep learning detection methods [8,
11]. In [16], a new deep learning model called
region-based CNN (R-CNN) was used to auto-
matically detect the breast lesions [16]. In [8],
another automatic method using a very complex
cascade of deep learning models was introduced
to detect breast lesions based on R-CNN.

For segmentation, several conventional works
have been presented to segment the boundaries
of breast lesions from the X-ray mammography
images such as growing regions, active contour,
and Markov random field (MRF) [17]. However,
all of these approaches have shortcomings
because they required a prior knowledge of breast
lesion contours. Recently, few deep learning
studies have been presented and achieved better
segmentation results for semantic and medical
images [8]. These segmentation models are
introduced by adopting and converting the
classification functionality of VGG-16 to the
segmentation purpose. However, these models
suffer from the loss of spatial resolution of the
generated feature maps due to the multiple layers
of max-pooling and subsampling. Although the
utilized max-pooling and subsampling layers
reduce the dimensions of derived feature maps
and minimize the computation expenses, the
spatial resolution of those maps are exponentially
decreased [5]. In [18], deep learning model
of FCN was used to segment skin lesions
from dermoscopy images [18]. Inspired by the
structure of FCN, another segmentation model
called U-Net was introduced to segment neural
brain images including encoder and decoder deep
convolutional layers [19]. The extracted feature
maps from each encoder layer were combined
with the corresponding one in the decoder
network. Then, decoder up-sampling and decon-
volutional layers were performed to overcome
the resolution loss of feature maps [19]. In [20], a
deep learning segmentation model called SegNet
is presented to segment the semantic images.
The SegNet model also consisted of encoder and
decoder convolutional network stages. Despite
the promising segmentation results of these
models, they have not yet been applied for
breast lesion segmentation. Up to date, only few
attempts have been presented for breast lesion
segmentation from mammograms based on deep
learning.

Breast lesion classification is the last stage of
any CAD systems. The aim of this stage is to
recognize or classify the breast lesions as either
benign or malignant. Indeed, the performance
of classification process mainly depends on the
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efficient representations of the derived features
[5]. In 2017, Yu et al. presented that a very deep
learning model achieved better classification
performance with relatively similar computa-
tional cost comparing the shallower models [18].
Recently, few integrated CAD systems based on
deep learning have been introduced including
detection, segmentation, as well as classification
for breast lesions [5, 8, 14]. In [21], a hybrid
CAD system was introduced based on the
combination of deep and hand-crafted features
using CNN-based conditional random forest
(CRF) to detect the potential lesion ROIs, region
growing based on active contour to segment the
lesion boundaries, and CNN to classify the breast
lesions. This CAD system achieved diagnosis
performance in terms of AUCwith 94.10%. In [8,
14], an integrated CAD system for breast cancer
detection, segmentation, and classification was
presented. For breast lesion detection, a complex
cascade structure of deep learning was utilized
involving multi-scale deep belief network (DBN)
with Gaussian mixture (GM) classifier, two
stages of R-CNN, two stages of CRF classifier,
and a refinement algorithm based on R-CNN
[8]. For segmentation, another cascade of deep
learning techniques was utilized involving two
stages of DBN-based CRF and a refinement
method using Chan-Vese active contour [8]. For
classification, a regular feedforward version of
CNN was used to classify the breast lesions
as either benign or malignant. Despite the
successes of these CAD systems for breast cancer

diagnosis, the remaining challenges still exist
including high complexities of memory, practical
implementation, and long prediction time.

Materials andMethods

Our integrated CAD system for breast cancer
diagnosis includes detection, segmentation, and
classification in a single framework. First, an
automatic mass detection based on YOLO is per-
formed. Then, a novel deep learning FrCN seg-
ments breast lesions. Finally, an automatic breast
lesion classification is performed via the convo-
lutional neural networks. A schematic diagram of
the integrated CAD system is depicted in Fig. 1.

Dataset

A public X-ray mammography database,
INbreast [12], is used in training and evaluation
of our integrated CAD system. The classification
label and localization ground truth (GT) of
the breast lesions for all mammograms in the
INbreast database are available and accurately
annotated by the experts [12]. All mammograms
were collected to represent real breast data with
pixel size of 70 μm (microns), and contrast res-
olution of 14-bit. According to the breast size of
the patient, the mammogram size is 3328 × 4084
or 2560 × 3328 pixels. The INbreast dataset
includes 410 mammograms (i.e., normal, benign,
and malignant) with both views of MLO and CC

(3) Breast Lesion
Classifica n

Deep Convolu onal

Input
Mammogram

CAD Final
Decision

Malignant

YOLO Predic on

(1) Breast Lesion
Detec on

(2) Breast Lesion
Segmen on

System
FrCN Deep Learn-

ing Model Network

Fig. 1 Schematic diagram of the fully integrated computer-aided diagnosis (CAD) system based on deep learning
detection, segmentation, and classification for breast lesions
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from 115 patients (cases) [12]. From 90 cases two
images (MLO and CC views) are collected for
each breast, and from 25 cases only two views
(MLO and CC) from one breast having cancer
were collected. To evaluate our CAD system,
we utilized all mammograms having lesions or
masses (benign and malignant) from both views
to collect in a total of 107 cases (34 benign and 73
malignant cases) [12]. In INbreast dataset, only
two benign and three malignant cases contain two
lesions. For benign cases, both CC views are col-
lected from two different patients. For malignant
cases, two mammogram views of CC and MLO
are collected from the same breast of patient
ID: “d713ef5849f98b6c_MG_L,” while one CC
view is collected from the different patient with
ID: “45c7f44839fd9e68_MG_R.” Both breast
lesions that are visible on both CC and MLO
views are used in this study. Thus, 36 benign
breast lesions with BI-RAD ∈ {2, 3} and 76 ma-
lignant breast lesions with BI-RAD ∈ {4, 5, 6} are
collected. Because some of benign and malignant
cases have more than one breast lesion, thereby, a
total of 112 breast lesions are collected [5, 8, 14].

Datasets Preparation: Training,
Validation, and Testing

For data preparation in this work, we randomly
divide benign and malignant breast images into
three groups: 70% (25 benign and 53 malignant)
for training, 10% (4 benign and 8 malignant) for
validation, and 20% (7 benign and 15 malignant)
for testing as previously performed [8, 14]. In
addition, unbiased double cross-validation strat-
egy is utilized as follows. Trainable parameters of
the proposed deep learning models are optimized
during the training process using only training
and validation datasets [14]. Then, the final per-
formance of the presented CAD system is only
evaluated using the testing dataset. In fact, double
cross-validation is very important for parameters
optimization and selections due to the following
reasons. First, to be sure testing dataset is totally
isolated during the training process. Second, to
avoid any bias that may occur during the training
process. Third, to ensure that the overall perfor-

mance of the presented CAD system is robust
and reliable for real testing as well. In this study,
fivefold cross-validation tests are also carried out
with training, validation, and testing sets, which
are generated by stratified partitioning to ensure
that each breast image gets tested equally and
to prevent any bias error for training and testing
tasks. For each fold, those breast lesions that are
visible on the same mammogram view or on both
CC andMLO views from the same patient should
be categorized in one set of training, testing, or
validation to avoid the system bias as well.

Preprocessing

Preprocessing of all mammograms is achieved
using the following steps. First, Otsu’s threshold-
ing is used separating the breast region from its
background to exclude the unwanted information
[5]. Second, contrast limited adaptive histogram
equalization (CLAHE) technique has been
successfully used to enhance the image contrast
between the suspicious lesions and their sur-
rounding normal tissues [5, 8]. Indeed, CLAHE
is an image contrast enhancement method which
depends on the histogram equalization process
[5]. There are two sequential steps to apply
CLAHE for breast image enhancement. First, the
histogram of the entire mammogram is divided
into multi-regions at certain thresholds. Then, the
histogram equalization process is locally applied
over each region. Same preprocessing strategy is
used for all mammograms that used in this study
without subsampling.

Data Balancing and Augmentation

To develop deep learning models, a large amount
of annotated dataset is required for parameter
optimization and selection during training pro-
cess [7, 8, 14]. To avoid any bias during train-
ing process, data balancing and augmentation
are widely used as regularization strategies for
deep learning models. Indeed, data balancing and
augmentation strategy are applied only for train-
ing dataset [5, 8, 14]. That means the original
breast lesion and its many representations (i.e.,
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augmented data) are only included in the training
set. Whereas, the testing set is only used with-
out augmentation to evaluate the proposed CAD
system over detection, segmentation, and classi-
fication stages. As aforementioned, the training
dataset from INbreast is unbalanced containing
25 benign and 53 malignant cases. Balancing of
training dataset means generating almost an equal
number of breast images from both benign and
malignant classes. Due to that, all breast benign
mammograms from the INbreast training dataset
are vertically flipped to balance benign and ma-
lignant cases. Thus, 103 mammograms (i.e., 50
benign and 53 malignant) are generated. Then,
the balanced training datasets are augmented 22
times using the following strategies. First, all
mammograms are rotated eight times around the
origin center with the angle of �θ = 45◦ (i.e., 0◦,
45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦) [7,
8]. Second, left-right and up-down flipping are
applied for all rotated mammograms with 90

◦
and

270
◦
. Third, random scaling and translations are

applied ten times for all original breast images.
In the total, 2266 mammograms are generated
from INbreast to train our CAD system over five-
fold cross-validation for all stages of detection,
segmentation, and classification. For each k-fold,
the strategies of data splitting, balancing, and
augmentation are applied in the same ways.

Initialization of Trainable Parameters
for Deep LearningModels

To accelerate and avoid overfitting that may occur
during training process of all deep learning mod-
els, the trainable parameters of convolutional and
fully connected (FCs) layers should be initialized
[5, 8]. In the literature, several strategies to initial-
ize the trainable parameters of deep learningmod-
els were used such as random initialization and
transfer learning [5, 8, 14]. In this study, transfer
learning is used to initialize the parameters in two
consecutive steps. First, all deep learning models
are pre-trained using a large annotated computer
vision dataset (i.e., ImageNet [22]). Second, these
models are fine-tuned using our augmented anno-
tated dataset (i.e., mammograms).

Breast Lesion Detection via YOLO

Detection of breast lesion is the first critical task
for the CAD system to identify all potential le-
sions from entire mammograms. In this chapter,
we adopt and use a deep learning model called
YOLO, a regional ROI-based CNN technique, to
perform the detection task [11]. Our preliminary
works using YOLO has proven that this technique
is effective for breast lesion detection tasks using
a public X-ray mammography dataset, DDSM [5,
15]. Since the INbreast dataset includes accurate
ground truth, YOLO could be a good choice for
detection of breast lesions due to the following
reasons. First, YOLO has a robust ability to di-
rectly detect the breast lesions from the entire
mammograms [15]. Second, detected bounding
boxes via YOLO accurately align the breast le-
sions, thereby, a low rate of false positives is
achieved compared with other studies [14]. Third,
YOLO can detect the most challenging cases
of breast lesions even when they exist over the
pectoral muscles or inside dense regions. Fourth,
required testing time and memory are extremely
lower than other more complex deep learning
models [14].

Breast Lesion Segmentation via FrCN

Once the breast lesions are detected from the
previous detection stage of our CAD system, they
are directly passed into the novel segmentation
model, FrCN, to segment the breast lesions end-
to-end. FrCN composes of two main consecutive
encoder and decoder networks. The encoder net-
work involves thirteen convolutional layers, while
decoder is built using three convolutional layers.
Unlike the previous deep learning models, the
max-pooling and subsampling layers are removed
from the both encoder and decoder networks to
preserve the full spatial resolution of the original
input image (i.e., breast lesion) as well as the
details of the objects. This is a key modification
to prevent any information loss during feature
map generation. Therefore, the high-level deep
feature maps in each block are generated utilizing
only the convolutional process, preserving the full
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Encoder Network
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Conv.1/2: 

3×3×64

Block: 3
Conv./5/6/7: 

3×3×256

Block: 4
Conv.8/9/10: 

3×3×512

Block: 2
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Detected 
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Detected 
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Segmented 
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Output
Segmented
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Fig. 2 Segmentation deep learning model of a full resolution convolutional network (FrCN). The input image is a
detected breast lesion ROI highlighted with its ground truth (red), while the output image is the corresponding segmented
ROI

resolution of the input images. By this modifi-
cation, FrCN is able to maintain the details and
edges especially for the tiny objects. Because the
convolutional layers on the full resolution of the
input images without subsampling in the encoder
network are used, up-sampling and deconvolu-
tional layers in the decoder network are not re-
quired. The final output of deep feature maps is
directly passed into a softmax function to obtain
the probability for each image pixel. Finally, a
non-linear activation function of rectified linear
unit (ReLU) is utilized after each block in the
encoder and decoder networks. The schematic
diagram of our deep learning FrCN segmentation
model is shown in Fig. 2. To evaluate the over-
all segmentation performance of FrCN, a direct
comparison against other existing deep learning
models such as FCN [23], SegNet [20], and U-
Net [19] is presented using the same dataset from
the INbreast database [12].

Breast Lesion Classification via Three
Convolutional Neural Networks

Once breast lesions are detected as well as seg-
mented, deep learning models of our feedforward
CNN [5], ResNet-50 [24], and InceptionResNet-
V2 [25] are separately used to classify the breast

lesions as benign or malignant. These deep learn-
ing models are used to perform the classifica-
tion task of our CAD system. Indeed, we use
the regular feedforward CNN presented in our
recent study [5]. Also the deep learning models of
ResNet-50 and InceptionResNet-V2 are adopted
replacing their last two layers by other four layers
of global average pooling (GAP) layer, two dense
layers with ReLU activation functions, and a lo-
gistic regression layer of softmax. Deep learning
models such as ResNet-50 and InceptionResNet-
V2 are recently introduced with very deep convo-
lutional layers to improve the classification per-
formance preserving the computational burden
to be similar as in the shallower CNNs [26].
The main principle of the Inception networks
is to produce multiple feature maps from the
input images using different parallel pathways
with different convolutional filters [26]. By using
these remedies with the Inception models, their
execution time overcomes other state-of-the-art
deep learning models of CNN and ResNet-50
[24]. Since the residual connections are inher-
ently important to train very deep architectures,
the filter concatenation stage of Inception models
is replaced by the residual ones producing the
InceptionResNet models [26]. Training of the In-
ception models is significantly accelerated using
the residual connections as demonstrated in [26].
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Meanwhile, the classification performance of the
residual Inception models is slightly better com-
paring the Inception modules without the residual
connections [26].

Experimental Settings

For evaluation of the CAD system, fivefold cross-
validation tests are carried out in each stage of
the CAD system using training, validation, and
testing datasets. These sets are generated by strat-
ified partitioning to ensure that each mammo-
gram gets tested equally preventing any bias er-
ror [14]. To avoid any bias that may occur dur-
ing training process, weights optimization pro-
cess utilizing a weighted cross-entropy loss func-
tion as well as double cross-validation are used
[5, 14].

Detection Experimental Settings

Due to the different sizes of both mammogram
views, all breast images are resized into a fixed
size of 448 × 448 pixels [5]. The YOLO-based
CAD system is trained for 135 epochs and mini-
batch size of 64 using only training and validation
datasets. Also, stochastic gradient descent (SGD)
optimizer is used with momentum and decay of
0.9 and 0.0005, respectively. The breast lesions
are considered to be correctly detected if the inter-
section over union (IoUExt.

GT ) between the extracted
and ground truth bounding boxes is greater than
or equals 50%. Moreover, the false positive can-
didates of breast lesions are manually excluded
before the segmentation and classification stages
of the CAD systems as previously applied in [5, 8,
14]. This is because there is a lack of ground truth
information of falsely detected lesions to derive
the performance evaluation metrics especially for
the segmentation stage [8]. Thus, the evaluation
results of segmentation and classification tasks
are computed with the exception of the falsely
detected cases of breast lesions.

Segmentation Experimental Settings

Similar to the detection stage, the same fivefold
cross-validation is performed for all segmentation
deep learning models: FCN [23], SegNet [20],
U-Net [19], and FrCN. To train all of these deep
learning models, Adam optimizer is used with a
learning rate of 0.001. Meanwhile, 135 epochs
and 20 mini-batches are used to optimize and
select the model parameters with the training and
validation datasets. As shown in Fig. 2, a dropout
of 0.5 is added after the first and second convo-
lutional layers in the decoder network to prevent
overfitting [5].

Classification Experimental Settings

All detected and segmented breast lesions are
normalized and resized using bi-cubic interpola-
tion into a fixed size of 128 × 128, 224 × 224,
and 299 × 299 pixels for CNN, ResNet-50, and
InceptionResNet-V2, respectively. Then, all these
breast lesions are directly fed into the classifica-
tion stage producing the final prediction of our
CAD system. In fact, these deep learning models
are adopted to compare the recognition perfor-
mance of shallower CNN against the deeper mod-
els of ResNet-50 and InceptionResNet-V2. This
comparison is performed under the same training
and testing settings for all deep learning models.
To verify the CAD system for classification, the
same fivefold cross-validation is performed sim-
ilar to the detection and segmentation stages. For
training, Adam optimizer with the initial learn-
ing rate of 0.0001 and weight decay of 0.0005
is used. The learning rate is reduced by 50%
if the loss function does not decrease by 0.001
every 10 epochs. The mini-batch size and number
of epochs are set to 24 and 130, respectively.
Dropout of 0.3 is used for both fully connected
layers in all deep learning models to prevent over-
fitting as well as accelerate the training process
[5, 8].
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Implementation Environment

All these experiments are performed on a PC
with the following hardware specifications: In-
tel(R) Core (TM) i7-6850K with 16 GB RAM,
clock speed of CPU @ 3.360 GHz, and GPU of
NVIDIA GeForce GTX 1080. The CAD system
is implemented in Python 2.7.14 and C++ on
the Ubuntu 16.04 operating system. The imple-
mentation of all deep segmentation models is
achieved utilizing Theano [27] and Keras [28]
deep learning libraries, while the detection and
classification models are implemented under the
Tensorflow environment [29].

Experimental Results
and Discussion

EvaluationMetrics

Each detection, segmentation, and classification
stage of the CAD system gets separately eval-
uated using an overall accuracy (Acc.), sensi-
tivity (Sen.), specificity (Sep.), F1-score (Dice),
Jaccard (Jac.), and Matthews correlation coeffi-
cient (MCC). Moreover, area under ROC curve
(AUC) is also used to evaluate the CAD system
over segmentation and classification stages. The
definition and criteria for all of these evaluation
metrics are available in [5].

Breast Lesion Detection Results

The detection performance of breast lesions via
YOLO over fivefold cross-validation tests with
the testing dataset is reported in Table 1. The
false detection cases presented in Table 1 indicate
the cases when IoUExt.

GT < 50%. This means that
the final extracted breast lesion has no enough
overlap ratio with its GT [5, 7, 8]. Fortunately,
YOLO detects at least one bounding box indicat-
ing breast lesion from all testing mammograms.
In this study, the false detection cases are ex-
cluded over each test fold for the next stages
of segmentation and classification. An average
overall detection accuracy of 97.27% at 0.25 false

positive per image (FPI), MCC of 93.93%, and
F1-score of 98.02% present the reliable detection
performance of the YOLO detector. Examples
of the qualitative breast lesion detection results
via YOLO identifying the potential breast lesion
ROIs are shown in Fig. 3. It is clearly shown
that YOLO can accurately detect and align the
detected bounding boxes surrounding the breast
lesions with high prediction confidence score and
high overlapping ratio of IoU. In fact, confidence
score indicates the probability of the presence of
breast lesions, while overlapping ratio indicates
how much the lesion detection localization is
accurate. Moreover, a comparison of the detec-
tion results using YOLO against the other latest
deep learning methods is listed in Table 2. It is
clearly shown that YOLO achieved much better
detection accuracy with higher prediction speed
in comparison to other deep learning detection
methods. Also, YOLO can detect even the most
challenging cases when the breast lesions exist
over the pectoral muscles or inside the breast
dense tissues as depicted in Fig. 3(a) and (b),
respectively. Therefore, the YOLO detector plays
a critical role in the CAD system, achieving the
best detection performance of breast lesions com-
paring the latest deep learning models.

Breast Lesion Segmentation Results

The average segmentation performance results
of our FrCN segmentation model against FCN,
SegNet, andU-Net over fivefold tests are reported
in Table 3. For comparison, the results of all
deep learning models are achieved without
any refining pre- and/or post-processing. The
quantitative measurements of all metrics are
computed per pixel of the segmented maps
with the same resolution of the input detected
breast lesions. FrCN obviously outperformed
other methods with an average Dice index of
92.36%, Jaccard coefficient of 85.81%, overall
accuracy of 92.69%, and MCC of 85.36%. U-Net
achieved better segmentation results comparing
SegNet in terms of all evaluation metrics. In
addition, SegNet achieved better segmentation
performance in terms of specificity with 96.38%.
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Table 1 The detection performance of the breast lesions over fivefold cross-validation using YOLO detection model
on the test sets from the INbreast dataset

Benign Malignant Total Metrics (%)

Fold test True False True False True False Acc. MCC F1-score

1st Fold 6
85.71%

1
14.29%

15
100%

0
0.0%

21
95.45%

1
4.55%

95.45 89.64 96.77

2nd Fold 7
100%

0
0.0%

14
93.33%

1
6.67%

21
95.45%

1
4.55%

95.45 90.37 96.56

3rd Fold 7
100%

0
0.0%

15
100%

0
0.0%

22
100%

0
0.0%

100 100 100

4th Fold 6
85.71%

1
14.29%

15
100%

0
0.0%

21
95.45%

1
4.55%

95.45 89.64 96.77

5th Fold 7
100%

0
0.0%

15
100%

0
0.0%

22
100%

0
0.0%

100 100 100

Avg.(%) 94.28 5.71 98.67 1.33 97.27 2.73 97.27 93.93 98.02

0.67

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Confidence
Score

IoU

(a)

0.77

0.98

Confidence
Score

IoU

0.67

1

0

0.2

0.4

0.6

0.8

1

Confidence
Score

IoU

(b)

Fig. 3 Examples of detected breast lesions from the INbreast dataset via the YOLO detector. Detected breast lesions
exist over the pectoral muscle and inside the breast dense tissues as shown in (a) and (b), respectively. Detected breast
lesions (magenta) and their ground truths (yellow) are superimposed on the original mammograms

Table 2 The detection performance comparison between the YOLO detector against the other latest studies on the test
sets from the INbreast

Reference Method Dataset
Prediction time per
image (Sec.) Detection accuracy (%)

Dhungel et al. [8],
Carneiro et al. [14]

Cascade deep learning F-RCN,
DBN, and CRF

INbreast 39 90.0 at 1.0 FPI

Kozegar et al. [30] Adaptive threshold with some
of machine learning techs

INbreast 108 87.0 at 3.67 FPI

Our presented
method

YOLO-based CAD system INbreast 0.014 97.27 at 0.25 FPI
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Table 3 The average breast lesion segmentation performance over fivefold cross-validation on the test sets from the
INbreast dataset

Evaluation metrics (%)

Fold test Deep learning method Dice Jac. Sen. Spe. Acc. AUC MCC

Avg. (%) FCN 88.05 79.14 82.06 95.10 88.95 89.52 80.30

SegNet 89.40 81.83 83.52 96.83 90.26 90.26 82.04

U-Net 90.98 83.77 87.03 95.70 91.91 91.72 83.24

Our FrCN 92.36 85.81 92.94 92.47 92.69 92.70 85.36

(a) (b)
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Fig. 4 Examples of qualitatively breast lesion segmentation results via our deep learning model of FrCN against the
FCN, U-Net, and SegNet are shown in (a) and (b), while (c) presents the evaluation performance of all deep learning
models in terms of ROC curves with their AUCs. The counters in (a) and (b) indicate the ground truth (red), FrCN
(yellow), U-Net (green), SegNet (magenta), and FCN (blue)

Moreover, examples of the qualitative breast
lesion segmentation results for FrCN against
FCN, SegNet, and U-Net are depicted in Fig. 4 (a)
and (b). Moreover, the segmentation performance
of FrCN against all other methods is evaluated
by the AUC over all test folds. Figure 4(c)
shows an example of the ROC curves with
AUCs from the 2nd test fold for comparison
among all segmentation models. As presented in
Table 3 and Fig. 4(c), the performance of breast
lesion segmentation via FrCN outperformed all
other methods in terms of AUC with 92.70%. In
addition, FrCN achieved faster training time with
6.42 h than FCN, SegNet, and U-Net with 12.94,
6.81, and 8.03 h, respectively. For testing, FrCN
segments the individual breast lesion in 8.51 s

comparing 10.25, 10.48, and 10.66 s for FCN,
SegNet, and U-net, respectively. Despite U-Net
achieved better segmentation results than SegNet,
but it is slightly slower to perform training and
testing tasks. FrCN overcomes the limitations
of the latest deep learning segmentation
models in terms of preserving high resolution
and better performance for large and tiny
objects.

Breast Lesion Classification Results

Once the detected lesions are segmented via
FrCN, deep learning convolutional networks
of CNN, ResNet-50, and InceptionResNet-
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Table 4 Breast lesion classification performance as an average over fivefold cross-validation on the test sets from the
INbreast dataset

Benign class Malignant class Weighted metrics

Fold test Method Sen. Spe. Dice Sen. Spe. Dice ACC AUC MCC

Avg. (%) CNN 84.75 90.57 82.19 90.57 84.76 91.77 88.74 87.67 74.17

ResNet-50 91.42 93.24 88.35 93.24 91.43 94.52 92.56 92.33 84.10

Inception ResNet-V2 90.47 97.33 92.16 97.33 90.47 96.64 95.32 93.91 89.39

Table 5 Comparison performance classification results of the fully integrated CAD system against others through all
stages of detection, segmentation, and classification

Reference Prediction classes

Prediction
time per
image (Sec.)

Overall classification
accuracy and (AUC) (%) Hardware specs

Dhungel et al.
[8]

Benign/Malignant 41 91 and (76) Intel Core i5-2500k, 8GB RAM,
3.30 GHz, and GPU of NVIDIA
GeForce GTX 460 SE 4045 MB

Carneiro et al.
[14]

Normal/Benign/
Malignant

41 NA and (78) → Benign
Vs. Malignant NA and
(86) → Malignant Vs.
(Normal + Benign)

Intel Core i7, 8GB RAM, 2.3 GHz,
and GPU of NVIDIA GeForce GT
650M 1024 MB

Our CAD
system

Benign/Malignant 9.32 95.32 and (93.91) Intel Core i7-6850K, 16GB RAM,
3.360 GHz, and GPU of NVIDIA
GeForce GTX 1080

V2 are used to classify these lesions as either
benign or malignant. Table 4 shows the average
breast lesion classification performance for each
class of benign and malignant over fivefold
tests. The evaluation results presented in Table
4 are computed for the correctly detected
breast lesions. It is obviously noted that the
deep learning model of InceptionResNet-
V2 achieved better classification results in
terms of sensitivity of 97.33%, specificity of
90.47%, overall accuracy of 95.32%, F1-score
of 94.40%, and AUC of 93.91%, whereas the
shallower model of CNN achieved the lowest
classification performance results in comparison
to other deeper models of ResNet-50 and
InceptionResNet-V2 in terms of all evaluation
metrics. This means that the deeper models
achieve better classification performance against
the shallower ones. However, the promising
classification performance of our fully integrated
CAD system is achieved due to many reasons as
follows. First, the potential breast lesion ROIs
are accurately detected and aligned using the
prediction model of YOLO. Second, the robust
segmentation deep learning model of FrCN plays
a critical role to extract the specific region of

breast lesions minimizing the false positive and
negative pixels from the surrounding normal
tissues. Third, the high deep level feature maps
derived using the state-of-the-art deep learning
models highly contribute to improvement of
the overall diagnostic performance of the CAD
system. Finally, a comparison between our
fully integrated CAD system with respect to
the latest studies based on the deep learning
is presented in Table 5. All these studies are
evaluated using the INbreast dataset through
each stage of detection, segmentation, and
classification. It is clearly shown that our CAD-
based deep learning could handle all these stages
achieving a higher performance as well as much
faster prediction time. Therefore, the promising
prediction performance of the CAD system
seems to make it more feasible towards practical
applications.

Conclusion

In this chapter, a fully integrated CAD system
based on deep learning including detection, seg-
mentation, and classification is presented for au-
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tomatic diagnosis of the breast lesions in a sin-
gle framework. To automatically detect breast
lesions from the entire mammograms, the YOLO-
based lesion detection could be used. Due to
the segmentation capability of the FrCN model,
the CAD system could achieve a much better
diagnostic results. Hence, the detection and seg-
mentation end-to-end of breast lesions could be
a key to minimize the false positive and negative
rates and then improve the overall performance
of our integrated CAD system. Moreover, classi-
fication based on the convolutional deep learning
contributes to accurately classify breast lesions.
A fully integrated CAD system based on deep
learning methodologies could be beneficial for
practical applications of future medical imaging
systems.
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